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 T
he only approaches currently avail-

able to reduce transmission of the 

novel coronavirus severe acute 

respiratory syndrome–coronavirus 2 

(SARS-CoV-2) are behavioral: hand-

washing, cough and sneeze etiquette, 

and, above all, social distancing. Policy-

makers have a variety of tools to enable 

these “nonpharmaceutical interventions” 

(NPIs), ranging from simple encourage-

ment and recommendations to full-on 

regulation and sanctions. However, these 

interventions are often used without rigor-

ous empirical evidence: They make sense 

in theory, and mathematical models can 

be used to predict their likely impact (1, 

2), but with different policies being tried 

in different places—often in complicated 

combinations and without systematic, 

built-in evaluation—we cannot confidently 

attribute any given reduction in transmis-

sion to a specific policy.

Because many of these interventions dif-

fer from each other in terms of their eco-

nomic and psychological cost—ranging 

from very inexpensive, in the case of inter-

ventions based on behavioral economics 

and psychology, to extremely costly, in the 

case of school and business closures—it is 

crucial to identify the interventions that 

most reduce transmission at the lowest eco-

nomic and psychological cost. Randomized 

controlled trials (RCTs) are one of several 

methods that can be used for this purpose 

but surprisingly have received little atten-

tion in the current pandemic, despite a long 

history in epidemiology and social science. 

We describe how RCTs for NPIs can be prac-

tically and ethically implemented in a pan-

demic, how compartmental models from 

infectious disease epidemiology can be used 

to minimize measurement requirements, 

and how to control for spillover effects and 

harness their benefits.

JUSTIFIABLE RCTS 

How can RCTs be practically and ethically 

conducted in a pandemic? In a typical RCT, 

a subset of randomly chosen individuals 

or regions receives an intervention, and a 

randomly chosen control group receives 

no intervention or a different intervention. 

The random assignment ensures that any 

later differences between the groups can be 

attributed to the intervention. During an 

outbreak, policy-makers must decide which 

interventions to impose when, and when to 

loosen them again. It will rarely be feasible 

in this context to omit individuals or regions 

entirely. However, policy-makers can use 

systematic timing of such interventions to 

both protect the population and understand 

the impact of the intervention. For example, 

when experts begin to think that measures 

can be loosened, this can be done gradually, 

so that evaluation is possible: A subset of 

randomly chosen locations (such as counties 

or municipalities) begins, and others gradu-

ally follow suit. Comparison of the “early” to 

the “late” regions makes it possible to esti-

mate the effects of the intervention.

This “phase-in” or “stepped-wedge” ap-

proach can be used at any point during the 
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Circles on the grounds of San Francisco’s Dolores Park are designed to limit the spread of SARS-CoV-2 by encouraging social distancing. 
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pandemic. At the beginning, pro-

tective measures can begin early 

in some areas and somewhat 

later in others. During the pan-

demic, periods of loosened mea-

sures may be necessary to restore 

a sense of normality and keep 

essential services working, or 

measures may have to be tight-

ened to limit further spread of 

the virus; these periods can also 

be systematically timed to evalu-

ate their impact. In extended 

versions, different interven-

tions can be tested against each 

other, and different locations can 

tighten or loosen different sub-

sets of restrictions; for example, 

schools could be opened back up, 

whereas nonessential businesses 

remain closed.

Governments and organiza-

tions could work with scientists 

to choose an experimental de-

sign, implement and keep track 

of the treatment assignment, 

and measure outcomes. Studies 

of this kind can now often be 

done in nimble and practicable 

ways, reducing the oversight 

and time burden on implement-

ing partners. Interventions 

could range from messaging 

campaigns to promote social 

distancing to laws and regula-

tions. Where full randomization 

(without phase-in) is possible, 

this may be desirable to in-

crease statistical power (3).

RCTs are, of course, not the 

only method for estimating the 

impact of NPIs. Where ran-

domization is not feasible, the “natural ex-

periments” created by some policies can be 

exploited, such as quasi-arbitrary cutoffs 

(for example, the reopening of stores below 

a certain square footage). Observational 

studies, often integrated with mathemati-

cal models have also contributed impor-

tant insights.

Great care must be exercised to make 

RCTs ethical. Several considerations are 

relevant: The approach may be ethically 

justifiable because there are two sources 

of uncertainty around most interventions. 

For any intervention, it may be uncertain 

whether its benefits in terms of reducing 

disease transmission exceed its economic 

and psychological costs or how these costs 

and benefits relate to those of other inter-

ventions. At the same time, it is difficult 

to identify a single “correct” moment to 

loosen or tighten protective measures, as il-

lustrated by ongoing policy debates. Thus, 

equipoise may be satisfied in terms of costs, 

benefits, and timing. Policy-makers are 

therefore neither knowingly withholding a 

beneficial intervention from constituents 

nor knowingly imposing a harmful one. 

This uncertainty is likely to make staggered 

tightening or loosening of an intervention 

more acceptable to the public.

Further, the phase-in or stepped-wedge ap-

proach may be ethically justifiable because 

individuals in both control and treatment 

groups eventually experience the costs and 

benefits of any intervention. In addition, 

even short periods of tightening or loosen-

ing can be used to determine the impact of 

mitigation measures, minimizing the burden 

on whichever group experiences the smaller 

benefits. A powerful illustration of the ethi-

cal acceptability of this phase-in approach 

among both scientists and the public is its 

use in RCTs of vaccines, even for highly lethal 

pathogens such as Ebola (4).

MODELS TO GUIDE DATA 

COLLECTION

Careful measurement of out-

comes is crucial for this ap-

proach to succeed. In particular, 

it is essential to understand the 

impact of any given interven-

tion on the full epidemic tra-

jectory [see supplementary 

materials (SM)]. However, the 

measurement requirements 

can be simplified if data collec-

tion and analysis are guided by 

compartmental models from 

infectious disease epidemiol-

ogy. The time course of infec-

tions is affected in a SIR model 

(reflecting the three possible 

states of an individual in the 

community: susceptible, infec-

tious, or recovered) when one 

group of locations (such as 

counties or districts) loosens or 

tightens the intervention for 2 

weeks while another maintains 

the status quo (see the figure) 

(5). Crucially, because the SIR 

model describes the entire tra-

jectory of an outbreak using 

only two parameters, very few 

measurements are required to 

estimate them. In particular, us-

ing only estimates of the num-

ber of infections at the end of 

the intervention in treatment 

and control regions, we can es-

timate how much a given inter-

vention reduces transmission 

relative to no intervention (see 

SM). In addition, this difference 

allows policy-makers to deter-

mine which of several interven-

tions reduced transmission the most and by 

how much. If additional information about 

the number of infections at the beginning of 

the intervention is available, we can further 

estimate whether transmission has been suf-

ficiently reduced that the outbreak is shrink-

ing (corresponding to an effective reproduc-

tive number below 1).

Insights from epidemiology can also be 

used to address several additional ques-

tions: In addition to learning how much an 

intervention changes the transmission rate, 

policy-makers may also want to know how 

different interventions affect the “final size” 

of the pandemic—what share of the popula-

tion will have been infected in total when 

the pandemic has died down. Also, they 

may want to understand how a single inter-

vention might perform if it were deployed 

at different time points during the pan-

demic (for example, early versus late) but 

can only test it once. Additionally, they may 
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Testing interventions during an outbreak
Time course of infection in the absence of an intervention (red) and with an 

intervention (blue) that is either loosened (top) or tightened (middle) for 2 weeks. 

The number of cases at the end of different tightening or loosening windows 

(bounds indicated with dashed vertical lines) in regions where the intervention 

was tightened or loosened compared with regions where it remained in place 

provides a measure of the relative change in transmission associated with the 

intervention. Final size (bottom) is affected by the time point at which the 2-week 

tightening or loosening of the intervention is initiated (5). See supplementary 

materials for details.
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want to directly compare the effectiveness 

of two interventions, despite them having 

been deployed at different times, because it 

may not always be possible to time periods 

of tightening and loosening precisely.

In the stylized model, all of these esti-

mates can be derived from adding a single 

measurement at one time point to those 

described above—namely, the number of 

susceptibles [measured, for example, with 

serology (6)] (see SM). Of course, the avail-

able capacity for polymerase chain reaction 

and serology needs to be able to support 

such studies, but testing capacity is grow-

ing around the world, suggesting feasibility.

An important caveat to reducing the 

measurement requirements is that the 

above approach leans on the assumptions 

of a relatively simple SIR  model; in par-

ticular, both the transmission rate and the 

impact of an intervention on this rate are 

assumed to remain constant throughout 

the pandemic. However, it is straightfor-

ward to extend the model to accommodate 

inherent variation in transmission through 

time, and complex treatment effects that 

may be a signature of NPIs, including de-

cay over time (for example, fatigue from a 

lockdown or fading response to a messag-

ing campaign), persistence (for example, 

hygiene behaviors such as handwashing 

which turn into a habit), or intensification 

over time (such as messaging campaigns 

that “go viral”). In such cases, the mea-

surement requirements will increase to 

identify the additional parameters (such as 

decay) contained in the extended model. 

Similarly, the basic compartmental model 

can be extended [to SIRS (susceptible-in-

fected-recovered-susceptible), SEIR (sus-

ceptible-exposed-infectious-recovered), 

or age-structured models, for example] to 

reflect additional features of the transmis-

sion process (duration of immunity, latent 

period, or variable contact patterns over 

age) or the intervention (for example, if it 

targets specific age groups).

Thus, the effects of interventions on dis-

ease transmission can be estimated with the 

help of epidemiological models. However, 

the economic and psychological costs and 

benefits of such interventions are equally 

important. Reducing the number of mea-

surements by leveraging the SIR model 

is not possible for these outcomes, about 

which the model makes no predictions and 

whose time course need not follow that 

of infections. For example, a “successful” 

intervention that reduces the risk of over-

burdening the health system will have the 

effect of spreading the infections over time. 

This implies that the desirable behaviors in-

duced by any intervention have to be main-

tained for longer to outlast the duration of 

the pandemic. This may impose psychologi-

cal and economic costs on the population 

that are larger than those that would be 

incurred in a more temporally condensed 

pandemic. In the absence of a model, these 

effects can only be captured with careful 

measurement over time.

SPILLOVER EFFECTS

Interventions delivered to some regions 

or individuals but not others are likely to 

nevertheless affect those who were not tar-

geted. Such so-called “spillover” effects pre-

sent both a challenge and an opportunity in 

evaluating the impact of NPIs. The oppor-

tunity is that such spillovers can generate 

strongly increasing returns to intervention 

coverage in terms of individual protection 

(7); they can therefore be harnessed to max-

imize the effects of a given intervention. For 

example, consider a hypothetical interven-

tion that reduces the size of a pandemic by 

15% when it is delivered to 20% of a com-

munity. Because of the nonlinear dynamics 

of infection that arise from depletion of the 

number of those susceptible to infection, in-

creasing the coverage to 60% may generate 

a greater-than-proportional reduction in 

pandemic size of 56%.

At the same time, such spillovers pose a 

challenge to the estimation of treatment ef-

fects. However, standard trial designs are 

available to enable measurement of spill-

overs (8–10). In particular, nonlinear returns 

to saturation (the share of the population ex-

posed to an intervention) can be integrated 

into tests of interventions by creating varia-

tion in spatial saturation of intervention 

delivery. For example, groups of 15 locations 

might be randomized to a “low saturation” 

condition in which a third of locations are 

treated with an intervention—for exam-

ple, the distribution of face masks or hand 

sanitizer, or opening or closing of parks or 

schools—or to a “high saturation” condition, 

in which two-thirds of locations are treated. 

Such studies have to be relatively large scale 

to achieve adequate statistical power; power 

calculations are therefore important, and us-

ing more than two or three levels of satura-

tion may not be practicable.

Because spatial spillovers may occur at 

different spatial scales, causal inference 

methods that flexibly allow for such compli-

cations have to be used. Data on the source 

of spillovers, such as the commuting pat-

terns of essential workers, can help iden-

tify relevant spatial scales. The feasibility 

of this approach in terms of both statistical 

power and causal inference in the presence 

of spillovers of unknown spatial dimensions 

has been suggested by recent large-scale 

studies on the general equilibrium effects of 

economic interventions (11). Thus, tests of 

interventions to combat COVID-19 should 

take advantage of, and measure, these non-

linear effects of saturation.

NPIs can be rigorously tested by using 

randomization without compromising 

scientific and ethical standards. Although 

this approach will require more time than 

generating projections from observational 

methods and mathematical models, the 

benefits in terms of accuracy could be con-

siderable. If policy-makers and scientists 

combine insights from infectious disease 

epidemiology with carefully and ethically 

designed impact evaluation, alongside 

other empirical and theoretical methods 

for studying impact (12–14), they will have 

a powerful tool for reducing the human 

health, societal, and economic costs in the 

SARS-CoV-2 pandemic and in pandemics 

in general. j
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